Commit 632f0c63 authored by joni's avatar joni
Browse files

added setpath to help with distribution of the app, and standalone python dependencies for the app

parent 815dbbec
This diff is collapsed.
#ifndef Py_PYTHON_H
#define Py_PYTHON_H
/* Since this is a "meta-include" file, no #ifdef __cplusplus / extern "C" { */
/* Include nearly all Python header files */
#include "patchlevel.h"
#include "pyconfig.h"
#include "pymacconfig.h"
#include <limits.h>
#ifndef UCHAR_MAX
#error "Something's broken. UCHAR_MAX should be defined in limits.h."
#if UCHAR_MAX != 255
#error "Python's source code assumes C's unsigned char is an 8-bit type."
#if defined(__sgi) && !defined(_SGI_MP_SOURCE)
#define _SGI_MP_SOURCE
#include <stdio.h>
#ifndef NULL
# error "Python.h requires that stdio.h define NULL."
#include <string.h>
#include <errno.h>
#include <stdlib.h>
#include <unistd.h>
#include <crypt.h>
/* For size_t? */
#include <stddef.h>
/* CAUTION: Build setups should ensure that NDEBUG is defined on the
* compiler command line when building Python in release mode; else
* assert() calls won't be removed.
#include <assert.h>
#include "pyport.h"
#include "pymacro.h"
/* A convenient way for code to know if clang's memory sanitizer is enabled. */
#if defined(__has_feature)
# if __has_feature(memory_sanitizer)
# if !defined(_Py_MEMORY_SANITIZER)
# endif
# endif
#include "pyatomic.h"
/* Debug-mode build with pymalloc implies PYMALLOC_DEBUG.
* PYMALLOC_DEBUG is in error if pymalloc is not in use.
#if defined(Py_DEBUG) && defined(WITH_PYMALLOC) && !defined(PYMALLOC_DEBUG)
#if defined(PYMALLOC_DEBUG) && !defined(WITH_PYMALLOC)
#include "pymath.h"
#include "pytime.h"
#include "pymem.h"
#include "object.h"
#include "objimpl.h"
#include "typeslots.h"
#include "pyhash.h"
#include "pydebug.h"
#include "bytearrayobject.h"
#include "bytesobject.h"
#include "unicodeobject.h"
#include "longobject.h"
#include "longintrepr.h"
#include "boolobject.h"
#include "floatobject.h"
#include "complexobject.h"
#include "rangeobject.h"
#include "memoryobject.h"
#include "tupleobject.h"
#include "listobject.h"
#include "dictobject.h"
#include "odictobject.h"
#include "enumobject.h"
#include "setobject.h"
#include "methodobject.h"
#include "moduleobject.h"
#include "funcobject.h"
#include "classobject.h"
#include "fileobject.h"
#include "pycapsule.h"
#include "traceback.h"
#include "sliceobject.h"
#include "cellobject.h"
#include "iterobject.h"
#include "genobject.h"
#include "descrobject.h"
#include "warnings.h"
#include "weakrefobject.h"
#include "structseq.h"
#include "namespaceobject.h"
#include "codecs.h"
#include "pyerrors.h"
#include "pystate.h"
#include "context.h"
#include "pyarena.h"
#include "modsupport.h"
#include "compile.h"
#include "pythonrun.h"
#include "pylifecycle.h"
#include "ceval.h"
#include "sysmodule.h"
#include "osmodule.h"
#include "intrcheck.h"
#include "import.h"
#include "abstract.h"
#include "bltinmodule.h"
#include "eval.h"
#include "pyctype.h"
#include "pystrtod.h"
#include "pystrcmp.h"
#include "dtoa.h"
#include "fileutils.h"
#include "pyfpe.h"
#endif /* !Py_PYTHON_H */
"""Record of phased-in incompatible language changes.
Each line is of the form:
FeatureName = "_Feature(" OptionalRelease "," MandatoryRelease ","
CompilerFlag ")"
where, normally, OptionalRelease < MandatoryRelease, and both are 5-tuples
of the same form as sys.version_info:
(PY_MAJOR_VERSION, # the 2 in 2.1.0a3; an int
PY_MINOR_VERSION, # the 1; an int
PY_MICRO_VERSION, # the 0; an int
PY_RELEASE_LEVEL, # "alpha", "beta", "candidate" or "final"; string
PY_RELEASE_SERIAL # the 3; an int
OptionalRelease records the first release in which
from __future__ import FeatureName
was accepted.
In the case of MandatoryReleases that have not yet occurred,
MandatoryRelease predicts the release in which the feature will become part
of the language.
Else MandatoryRelease records when the feature became part of the language;
in releases at or after that, modules no longer need
from __future__ import FeatureName
to use the feature in question, but may continue to use such imports.
MandatoryRelease may also be None, meaning that a planned feature got
Instances of class _Feature have two corresponding methods,
.getOptionalRelease() and .getMandatoryRelease().
CompilerFlag is the (bitfield) flag that should be passed in the fourth
argument to the builtin function compile() to enable the feature in
dynamically compiled code. This flag is stored in the .compiler_flag
attribute on _Future instances. These values must match the appropriate
#defines of CO_xxx flags in Include/compile.h.
No feature line is ever to be deleted from this file.
all_feature_names = [
__all__ = ["all_feature_names"] + all_feature_names
# The CO_xxx symbols are defined here under the same names defined in
# code.h and used by compile.h, so that an editor search will find them here.
# However, they're not exported in __all__, because they don't really belong to
# this module.
CO_NESTED = 0x0010 # nested_scopes
CO_GENERATOR_ALLOWED = 0 # generators (obsolete, was 0x1000)
CO_FUTURE_DIVISION = 0x2000 # division
CO_FUTURE_ABSOLUTE_IMPORT = 0x4000 # perform absolute imports by default
CO_FUTURE_WITH_STATEMENT = 0x8000 # with statement
CO_FUTURE_PRINT_FUNCTION = 0x10000 # print function
CO_FUTURE_UNICODE_LITERALS = 0x20000 # unicode string literals
CO_FUTURE_GENERATOR_STOP = 0x80000 # StopIteration becomes RuntimeError in generators
CO_FUTURE_ANNOTATIONS = 0x100000 # annotations become strings at runtime
class _Feature:
def __init__(self, optionalRelease, mandatoryRelease, compiler_flag):
self.optional = optionalRelease
self.mandatory = mandatoryRelease
self.compiler_flag = compiler_flag
def getOptionalRelease(self):
"""Return first release in which this feature was recognized.
This is a 5-tuple, of the same form as sys.version_info.
return self.optional
def getMandatoryRelease(self):
"""Return release in which this feature will become mandatory.
This is a 5-tuple, of the same form as sys.version_info, or, if
the feature was dropped, is None.
return self.mandatory
def __repr__(self):
return "_Feature" + repr((self.optional,
nested_scopes = _Feature((2, 1, 0, "beta", 1),
(2, 2, 0, "alpha", 0),
generators = _Feature((2, 2, 0, "alpha", 1),
(2, 3, 0, "final", 0),
division = _Feature((2, 2, 0, "alpha", 2),
(3, 0, 0, "alpha", 0),
absolute_import = _Feature((2, 5, 0, "alpha", 1),
(3, 0, 0, "alpha", 0),
with_statement = _Feature((2, 5, 0, "alpha", 1),
(2, 6, 0, "alpha", 0),
print_function = _Feature((2, 6, 0, "alpha", 2),
(3, 0, 0, "alpha", 0),
unicode_literals = _Feature((2, 6, 0, "alpha", 2),
(3, 0, 0, "alpha", 0),
barry_as_FLUFL = _Feature((3, 1, 0, "alpha", 2),
(3, 9, 0, "alpha", 0),
generator_stop = _Feature((3, 5, 0, "beta", 1),
(3, 7, 0, "alpha", 0),
annotations = _Feature((3, 7, 0, "beta", 1),
(4, 0, 0, "alpha", 0),
"""A minimal subset of the locale module used at interpreter startup
(imported by the _io module), in order to reduce startup time.
Don't import directly from third-party code; use the `locale` module instead!
import sys
import _locale
if sys.platform.startswith("win"):
def getpreferredencoding(do_setlocale=True):
if sys.flags.utf8_mode:
return 'UTF-8'
return _locale._getdefaultlocale()[1]
except AttributeError:
if hasattr(sys, 'getandroidapilevel'):
# On Android langinfo.h and CODESET are missing, and UTF-8 is
# always used in mbstowcs() and wcstombs().
def getpreferredencoding(do_setlocale=True):
return 'UTF-8'
def getpreferredencoding(do_setlocale=True):
if sys.flags.utf8_mode:
return 'UTF-8'
# This path for legacy systems needs the more complex
# getdefaultlocale() function, import the full locale module.
import locale
return locale.getpreferredencoding(do_setlocale)
def getpreferredencoding(do_setlocale=True):
assert not do_setlocale
if sys.flags.utf8_mode:
return 'UTF-8'
result = _locale.nl_langinfo(_locale.CODESET)
if not result and sys.platform == 'darwin':
# nl_langinfo can return an empty string
# when the setting has an invalid value.
# Default to UTF-8 in that case because
# UTF-8 is the default charset on OSX and
# returning nothing will crash the
# interpreter.
result = 'UTF-8'
return result
"""Drop-in replacement for the thread module.
Meant to be used as a brain-dead substitute so that threaded code does
not need to be rewritten for when the thread module is not present.
Suggested usage is::
import _thread
except ImportError:
import _dummy_thread as _thread
# Exports only things specified by thread documentation;
# skipping obsolete synonyms allocate(), start_new(), exit_thread().
__all__ = ['error', 'start_new_thread', 'exit', 'get_ident', 'allocate_lock',
'interrupt_main', 'LockType']
# A dummy value
# NOTE: this module can be imported early in the extension building process,
# and so top level imports of other modules should be avoided. Instead, all
# imports are done when needed on a function-by-function basis. Since threads
# are disabled, the import lock should not be an issue anyway (??).
error = RuntimeError
def start_new_thread(function, args, kwargs={}):
"""Dummy implementation of _thread.start_new_thread().
Compatibility is maintained by making sure that ``args`` is a
tuple and ``kwargs`` is a dictionary. If an exception is raised
and it is SystemExit (which can be done by _thread.exit()) it is
caught and nothing is done; all other exceptions are printed out
by using traceback.print_exc().
If the executed function calls interrupt_main the KeyboardInterrupt will be
raised when the function returns.
if type(args) != type(tuple()):
raise TypeError("2nd arg must be a tuple")
if type(kwargs) != type(dict()):
raise TypeError("3rd arg must be a dict")
global _main
_main = False
function(*args, **kwargs)
except SystemExit:
import traceback
_main = True
global _interrupt
if _interrupt:
_interrupt = False
raise KeyboardInterrupt
def exit():
"""Dummy implementation of _thread.exit()."""
raise SystemExit
def get_ident():
"""Dummy implementation of _thread.get_ident().
Since this module should only be used when _threadmodule is not
available, it is safe to assume that the current process is the
only thread. Thus a constant can be safely returned.
return 1
def allocate_lock():
"""Dummy implementation of _thread.allocate_lock()."""
return LockType()
def stack_size(size=None):
"""Dummy implementation of _thread.stack_size()."""
if size is not None:
raise error("setting thread stack size not supported")
return 0
def _set_sentinel():
"""Dummy implementation of _thread._set_sentinel()."""
return LockType()
class LockType(object):
"""Class implementing dummy implementation of _thread.LockType.
Compatibility is maintained by maintaining self.locked_status
which is a boolean that stores the state of the lock. Pickling of
the lock, though, should not be done since if the _thread module is
then used with an unpickled ``lock()`` from here problems could
occur from this class not having atomic methods.
def __init__(self):
self.locked_status = False
def acquire(self, waitflag=None, timeout=-1):
"""Dummy implementation of acquire().
For blocking calls, self.locked_status is automatically set to
True and returned appropriately based on value of
``waitflag``. If it is non-blocking, then the value is
actually checked and not set if it is already acquired. This
is all done so that threading.Condition's assert statements
aren't triggered and throw a little fit.
if waitflag is None or waitflag:
self.locked_status = True
return True
if not self.locked_status:
self.locked_status = True
return True
if timeout > 0:
import time
return False
__enter__ = acquire
def __exit__(self, typ, val, tb):
def release(self):
"""Release the dummy lock."""
# XXX Perhaps shouldn't actually bother to test? Could lead
# to problems for complex, threaded code.
if not self.locked_status:
raise error
self.locked_status = False
return True
def locked(self):
return self.locked_status
def __repr__(self):
return "<%s %s.%s object at %s>" % (
"locked" if self.locked_status else "unlocked",
# Used to signal that interrupt_main was called in a "thread"
_interrupt = False
# True when not executing in a "thread"
_main = True
def interrupt_main():
"""Set _interrupt flag to True to have start_new_thread raise
KeyboardInterrupt upon exiting."""
if _main:
raise KeyboardInterrupt
global _interrupt
_interrupt = True
# Access WeakSet through the weakref module.
# This code is separated-out because it is needed
# by to load everything else at startup.
from _weakref import ref
__all__ = ['WeakSet']
class _IterationGuard:
# This context manager registers itself in the current iterators of the
# weak container, such as to delay all removals until the context manager
# exits.
# This technique should be relatively thread-safe (since sets are).
def __init__(self, weakcontainer):
# Don't create cycles
self.weakcontainer = ref(weakcontainer)
def __enter__(self):
w = self.weakcontainer()
if w is not None:
return self
def __exit__(self, e, t, b):
w = self.weakcontainer()
if w is not None:
s = w._iterating
if not s:
class WeakSet:
def __init__(self, data=None): = set()
def _remove(item, selfref=ref(self)):
self = selfref()
if self is not None:
if self._iterating:
self._remove = _remove
# A list of keys to be removed
self._pending_removals = []
self._iterating = set()
if data is not None:
def _commit_removals(self):
l = self._pending_removals
discard =
while l:
def __iter__(self):
with _IterationGuard(self):
for itemref in
item = itemref()
if item is not None:
# Caveat: the iterator will keep a strong reference to
# `item` until it is resumed or closed.
yield item
def __len__(self):
return len( - len(self._pending_removals)
def __contains__(self, item):
wr = ref(item)
except TypeError:
return False
return wr in
def __reduce__(self):
return (self.__class__, (list(self),),
getattr(self, '__dict__', None))